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A class of linear systems of differential equations of Ito is examined. The alge- 

braic criterion for exponential stability in the mean square is given. This crite- 
rion is easily applied in the case where the system is given by a transfer matrix. 

The stability of stochastic differential equations was fist examined in papers 
[l, 23. Linear systems of differential equations of Ito were studied in detail in 
papers [3 - 81. The necessary and sufficient condition for stochastic exponential 
stability in the mean square can be found in papers [3, 81 for such systems. This 

condition consists of the fact that the spectrum of some square matrix, which is 
constructed with respect to parameters of the system, lies in the open left half- 
plane. In practice a check of this condition for a system of the order v is redu- 

ced to the computation of no less than v(v -j- 1) / 2 determinants of the order 
1, 2, . . . . v(v i- 1) / 2. The execution of this procedure becomes difficult for large 
v The special form of systems, which are examined in this paper and which 
are characteristic for a large number of applied problems, permits to establish 
another, more convenient criterion for stability. 

1. Formulation of the problem, Let us examine the system of linear diff- 
erential equations of It0 

Here cpr, ol, ar are scalar quantities; z, qr, rt are vectors of the dimension v . The 
matrix p has the dimension v X v. Parameters of the system %I, qi, rl and P are const- 
ant. It is assumed that s1 , &, . . . . & are scalar independent Gaussian white noises with 

unit spectral density [3]. The real quantities al have the meaning of noise intensities 
perturbing the system. The asterisk indicates the operation of matrix transposition and 

complex conjugation of its elements. 
The following definition of stability of Eqs. (1.1). (1.2) introduced first in papers 

lJ. 21 is used below. 
Definition 1. System (1. l), (1.2) is called stochastically exponentially stable 

in the mean square if positive values A and E exist such that for any t >* LO and any 
v- dimensional vector JO the inequality izllr(t) 12 ‘Q A ~~j%sp( --~(t -- to)), holds. Here 

s(l) is the solution of system (1.1). (1.2) determined by the condition z(t,) = ~0. The 
symbol ill represents mathematical expectation, For the sake of brevity the stability of 
the stochastic system in the sense of Definition 1 will be called simply stability. 

In applications systems of differential equations are frequently given in the form 
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6 = - x (P) (P> 5 = 1151 /It ‘p = II 9, II (1 = 1, 2, . ..) k) (1.3) 

Here p is the operator of differentiation with time, x(h) is the transfer matrix of the 
system from inputs (Pm to outputs ul *The elements of this matrix are proper rational 

functions of complex parameter h. It is known that from a given matrix x(h) of proper 

iational functions it is possible to construct a matrix P and vectors qm, 71 such that the 
relationships 

x (h) = II xi, (I.) II:. rn=l’ kn = r [* (P - AI)-‘q m (1.4) 

are satisfied and system (l.l), (1.2) is completely controllable and observable. Any 

such system (1.1). (1.2) will be called the normal form of system (1.3), (1.2). As is 
customary, by solutions of system (1.3). (1.2) below we mean solutions CQ (1) corresp- 

onding to the normal form (1.1). (1.2). 
Definition 2. System (1.3), (1.2) is called stable if its normal form is stable. 

We note that the procedure for the determination of matrix P and vectors qm and rl 
from the transfer matrix x(h) of the system is frequently difficult, particularly in the 
case of multiple poles x(h). Therefore it is desirable to obtain the stability conditions 

for system (1.3). (1.2) in terms of the transfer matrix. Using results of papers [3, 41 it 
is easy to show that the stability of the system is preserved when the noise intensities are 

lowered. More exactly speaking, if system (1.3), (1.2) is stable for values of noise in- 

tensities c~l~,...,a~~, then it will remain stable for any intensities al,. ..,cQ which satisfy 

the conditions 1 al 1 .S 1 cq’ 1 (1 = 1, 2, ..,, k). 

Definition 3. The vector of intensities a0 =z 11 ccl’ 11 is called critical for the system 
(1.3), (1.2) or its normal representation (1. I), (1.2) if the system is stable for all vec- 
tors EC? for 0 < e < 1 and unstable for vectors of intensities XL’ for E ,> 1. If for zero 

intensities a1 = a2 = . . .= air = 0 the determinate system (1. l), (1.2) is asymptotic- 
ally stable, then system (1.3), fl. 2) is stable for sufficiently small intensities [3, 41. 

Consequently, in the space of parameters a,, . . . . at; the critical intensities separate the 
region of stability of system (1.3). (1.2). In me case of single-parameter perturbation 

(k = 1) the interval (-uO, aO) serves as the region of stability of system (1.3), (1.2). 
here the quantity a0 represents the critical intensity of noise. 

2. Fundamental roault#, Let us assume initially that the normal form of sys- 
tem (1.1). (1.2) is given, We shall consider Y to be a Hurvitz matrix, i.e. its spectrum 
lies in the open left half-plane. This condition is necessary for stability. Let us denote 
by A the linear operator associating to each of the Y x v matrices G the matrix A !G! = 
= H, where H is the unique solution of the matrix equation 

P*H+ HP = -G 13.11 

It is known that if G is real, symmetrical, positive definite or semi-definite, then 
H = A(G) also have the same properties. 

From coefficients of system (1.1). (1.2) we compose the 1; x lc-dimensional matrix 

PInI = Q, *‘4 @tr,*) ‘i,,, (2.2) 

From previous statements it follows that elements R are nonnegative. We can show that 

Plm = 0 when, and only when xlrn (h) z 0. 
Theorem 1. System (l.l), (1.2) is stable when, and only when the P -matrix 
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of Hurvitz and the eigenvalues B in modulus are smaller than unity. 
The matrix R can be determined directly from the transfer matrix of the system X(1). 

Lemma 1. Let x[, (h) = ‘flm (h) / Aim (h), where Arm (h) is the Hurvitz polynomial. 

Then the equation 
fl* 04 

xl, la) xl, (+ = A,&) + 

Tlrn (-- N 
A,,(--h) (2.3) 

has as its solution the polynomial ‘~1 ,,, (h) the degree of which is lower than the degree 
of Aim (A). Such a solution is unique. The matrix R. is defined by equations 

Theorem 2. System (1.3), (1.2) is stable when and only when the poles x(h) lie 
in the open left half-plane and the eigenvalues R in modulus are smaller than unity. 

Proof. Lemma 1 states the equivalence of Theorems 1 and 2. It will be shown that 

numbers plm, which are defined by relationship (2.2), can be computed from Eqs. (2.3). 
(2.4). i. e. we shall prove the following statement. Let p-matrix of Hurvitz H = A 

(rr*), p = q*Hq, x(h) = r*(P - hl)-l q and x(h) = y(h) / A(X valid. Then the follow- 

ing relationship holds 
r (I) 

P =$zm h -z(h) 

where z(h) is the solution of equation 

r(---h) t QJ - - x 6) x (- a) = A (_ a) + A (a) 

We have the equality 
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-(Z-H + HP) = - [(P - ioZ)* H + H(P - iol)] = rr* 

Multiplying this equality on the right by qio = - (P - id)-l q and on the left by (q&+ 
we obtain 2 Re q*Hq, = 1 x (io) 1%. Consequently, the polynomial r (h) such that z (A) / 
/A(h) = q*HqA serves as the unique solution of Eq. (2.5). Since q*Hq = lih&q*Hqh, 

Lemma 1 is proven. 
Before going to the proof of Theorem 1, we establish the following statement. 

Lemma 2. For a square matrix 5 = 0 &j &i with nonnegative elements the 

following statements are equivalent: 
a) Vectors x and TJ exist with positive components, satisfying the equation (I - 6) 

b) All successive principal minors Br (1 = 1,. .., k) of the matrix (Zk - 5) are positive. 
c) The eigenvalues of matrix 5 in modulus are smaller than unity. 
The equivalence of statements (b) and (c) and the consequence that (a) follows from 

them is proven in [9]. We shall show how statement (b) follows from (a). The proof will 
be carried out by induction. 

Since 

rli = (i - ct*) 1ci - i Sij'j 

j+t, i=l 

then (1 - Si,) 3 qi / x, > 0 and. consequently, 01) 0. 
Let us assume that e1 > O(Z =I i, . . . . m; m< k). We denote U lali6ijl$, jzs_1' fzll"&~' 

The matrix (I,,, - U,+s) can be written in the form 
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(Zm+1 - U,+J = II (IT73 - UJ-b 

- CL d II 
where the value d > 0, and the m dimensional vectors b and c have nonnegative com- 
ponents. Components of vector g = (I,,, - G,,,)j-_bx,, are not smaller than the corr- 
esponding components of vector n and, consequently, they are positive. Since the mat- 
rix (Zm - U,,,)-1 has nonnegative components, then 

- c+f < - c* (Z, - CZJ1 bx,,, 

From this we conclude that e,,,+i = f3,,, (d - C* (I,,, - Urn)-1 b) >O. Lemma 2 is proven. 
let us prove Theorem 1. For stability of system (1.1). (1.2) it is necessary and suffi- 

cient (see [3], chapter 6) that positive definite quadratic forms V(X) = s*ZZz and W(s)= 

= x*Gz exist and satisfy the following relationship [3]: 
LV(s) = - W(z) (2.6) 

LV (2) = 2s*ZZZ% + 5 ul%*r19r*HQIrl*~ 
I=1 

Relationship (2.6) is equivalent to the matrix relationship 
k 

- (PH + HP) - 2 uL2ql*HqlrlrI+= G 

I=1 
(2.7) 

Applying the operator A, which is deRned by (2.1) to both parts of (2.7). we obtain 
Ir 

H - 2 ulZql*HqIA (rlrI*) = A (G) (2.8) 

t=1 

It will be shown that the necessary and sufficient condition for the existence of H > 0 
andG ) 0 satisfying (2.8). is the fulfillment of statement (a) of Lemma 2 for c = R*, 
where R is determined in (2.2). This will also accomplish the proof of Theorem 1. 

Necessity. We denote 

x = II 9,‘H9, $& n = II 9;n (G) 9l II:=1 (2.2) 

It follows from (2.8) that x and 11 satisfy the linear equations 

“m- i a12Plrny =rl, (2.10) 

I=1 

Sufficiency. It follows from statement (c) of Lemma 2 that the solution of linear 
system (2.10) has positive components for any vector n with positive components. Let 
us take any positive definite matrix G. Let us determine the vector n with the aid of 
the second equation (2.9). and the matrix H from the equation 

H = A (G) + i; a12x,A (rlrl*) >O 

1=1 

Here x is the solution of (2.10). It is easy to verify that the first equation (2.9) is satis- 
fied. Consequently, H satisfies Eq, (2.8). 

Note 1. Let the poles of the transfer matrix x(h) lie in the open left half-space. 

Let us denote by 6,, I!&,..., 6 successive principal minors of matrix (ZI, - R). Then in the k 
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intensity space a,, a*,...,ak the region of stability of system (1.3), (1.2) is determined 
by the inequalities 

O1> 0, 02 > 0, . . . . O,>O (2.11) 

The critical vectors of intensities a0 form the boundary of the stability region and sat- 
isfy the equation 13~ = 0. In the case of a single-parameter perturbation the critical in- 
tensity a0 of the system is calculated from the equation lcz’l = p-‘/z, where p is deter- 
mined from (2.3), (2.4). 

Proof. It is sufficient to prove that vectors of critical intensities cc0 satisfy the 

equation fls = det(Zk - R) = 0. Let R = R” be the corresponding matrix to vector a0 
Then for any ~(0 < E < 1) the moduli of eigenvalues of matrix eff are less than unity. 
On the basis of continuity the maximum eigenvalue of matrix R does not exceed unity. 
However, since a0 is the critical vector, the maximum eigenvalue is equal to unity. 
Consequently, ek = 0. 

Algorithm for calculation of matrix R from equations (2.3), (2.4). Let the following 
rational function be given 

X (N = 
+rJ,“-’ + y*h”-2 + . . . + TV +r 6) 

h” + A&“-’ + . . . + A, =a(h) 

Let us assume that 

x @) x (-- h) = A (A) LB+%&;, r (J.) 
p =,,t,iTm h A (h) 

z (J.) = zJ.“-1 + . . . + z, 

where A(h) is the Hurvitz polynomial. Then the algorithm for the computation of p 
consists of the following operations: 

1) Computation of vector 8 using the formula: 

71 0 0 . . . 0 (-1)“_’ r1 

r3 73 v...o (A)‘-3 r;l 

6= __-_- ----- 

__-.._-- -- -- 

0 0 0 . . . T” TV I 

2) Computation of the first element ‘pl of vector (p, which satisfies the linear algebr- 

aic system H,cp = 8, where 

hi 1 0 . . . 0 

A3 AZ A1 . . . 0 

H,= ------ 
_------ 

0 0 0 . . . A” 

3) Computation of the desired quantity p = 1/2(--l)“-‘cp,. 

3, Some reaultv of application of Theorem 2 to concrete 
ayctemt. Stability conditions are presented for a fourth order scalar equation with 
constant coefficientsin the case of stochastic perturbation of one of the coefficients of 
the equation. 

Let the trivial solution of the equation 
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I/(~) + .yc3) + byc2) -I- cy(‘) + dy -)- @‘a = 0 

be asymptotically stable for zero noise :a = 0). The conditions of stability are as follows: 

G = y(2): a3 < P/c 

G = y(l): cl"< S/a, 6 = y(3): P - 
a2 < be - ad 

fi = 2(abc - c2 - a2d) 

Stability conditions of equations of the second and third orders can be found in [3]. We 
note that the stability criterion in this paper as applied to linear equations of the Y th 
order is close to the criterion of paper [6]. 

Stability conditions are presented for a system of two equations of the second order 

y(s) + .$I) + br,(l) + cy + dz + afa = 0 

,(2) + ey(l) + f,(l) + gy + hz = 0 

‘We denote k = a + f, 1 = h + c - be -I- af, m = ah + cf - bg - de, II = ch- dg. 

Let conditions of asvmntotic stability be satisfied for zero noise (a = 6): kl - m > 0, 

klm - kan - ma > 0, n > 0. The conditions of stability are as follows: 
o = y: a2 < yn{h2fkZ - m) -I- n[m -!- (52 - 2h)kl}-’ 

5 = y(l): aa < y[(rP - n)k + (I + f” - 2h)mP 

0 = z : ~2 < yn[g2(kl - m) -/- knee]_’ 

0 = z(l): aa < T(g2k + ezm)-l 

y = 2(klm - kah - rn’)l 

The following example is interesting because here the stability region is constructed 

for a system which is subject to the action of two in- 

dependent noises of intensities a, and a2 . Let US 

examine the system 

a1 = & [(alp + UL) rm?$’ + (hp + bz) 5mb’I 

~2 = & [ (clp + ci) a&,~’ + (dip + dj) am&‘] 

A(p) = P’ + A$ + A, 

here p is the operator of differentiation, A(p) is the 
Hurvitz polynomial. According to Note i the stability 

Fig.. 1. region of the system is defined by the inequalities 

01 = 1 - c$a > 0, Be = 1 - uPa - c$d + a12a22 (ad - bc) > 0 

ar2Az + ass 
a= 2ArAa ’ 

b = bi”Aa + b? 

2ArA1. 
cl”, As + es?’ d12Az + da2 

C= 2ArAn ’ al= 2ArAa 

In Fig. 1 boundaries of stability regions for various cases are given. We present the 
list of examined cases according to the numbers of lines in the Figure (regions of stabi- 
lity in the a12, m2 plane are bounded by coordinate axes and the indicated lines). 
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1. ad- be > 0: 1.1. abed > 0; 1.2. be = 0, ad > 0 tsegments MN and 2. ad - bc = 0: 2.1. 

abed > 0; 2.2. a 
NP) = = = 

b c 0, = = = 
=>0 

d > 0; 2.3. b c d 0, 

3. ad - bc < 0: 3.1. abed > 0; 3.2. a 0, bed = > 0; = 3.3. abc d 3.4. a = d = 0, bc > 0 > 0, 0; 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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